PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Analysis by the thermodynamic formalism for an experiment of an electronic circuit
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An experiment of a nonlineaRLC electronic circuit that exhibits chaotic behavior is analyzed by the
thermodynamic formalism method. The band merging is ubiquitous in physical systems that show chaotic
behavior. A dynamical variable of the experimental data just after the band merging is studied. The results
show that a dynamic scaling law holds in the experimental data. The decay rate of temporal correlation has the
scaling form asy,= «g(q/«), whereq is the parameter that characterizes the fluctuation of dynamical variable
and « is its characteristic value. The present analysis confirms that the thermodynamic formalism and the
generalized power spectrum can be successively applied for time series obtained from concrete experiments.
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[. INTRODUCTION periment of a nonlineaR L C circuit will be reported. In the
past many temporal correlations might be abandoned in the
In recent years the thermodynamic formalism has beegonventional analysis, whereas these correlations involve es-
used in many disciplineiL,2]. It is very useful to character- sential fe_atures for physics. This paper contrjbutes to nonlin-
ize the self-similar statistics of physical systems. The firs€2" Physics a way to extract various correlations or modes of

theoretical work describing the thermodynamic formalismmo_lt_'r?.n from e>'<per|mer'1talddata].c I In Sec. Il .
[3] was published by Donsker and Varadhan, where it was IS paper IS organized as Tollows. In S€c. i an experi-
presented as thiarge deviation theorf4—6]. On the other ment that produces a chaotic time series is introduced. This
hand. the same framework was completed for physical Sys(gxperiment was carried out with an electric circuit known as

tems[7—9] independently of the probability theory. This for- theddriven. nfonlinelaRLCdcitrﬁuit. (Ijn Sec. Il firstt thr?h ther-
malism is especially useful in characterizing nonlinear sys-mO ynamic formalism and the ordgrpower spectrunhy(w)

tems, and the usefulness of this approach has been presenfe[ rixlewed br'ef:y'fTﬁXtt;he exgerlme_nt?l datell_ are anzht/rzlEd
already[1]. The use of the artificial parametercorrespond- rom the viewpoint ot the thermodynamic formaiism, and the

ing to the temperature in thermodynamics makes it possiblggze.r N g?wer tsr?ectrunhg(w) ItS ésed ltod!nvesugatcli the data
to investigate the statistical aspect of dynamical variables. obtained from the experiment. Loncluding remarks are given

Recently this formalism has been extended to the thder-In Sec. IV.
power spectrum in order to single out temporal correlations Il. AN EXPERIMENT FOR AN ELECTRONIC CIRCUIT
contained in the dynamical variable from the viewpoint of
the thermodynamic formalisfri0]. The orderg power spec- To test our approach we will use a simple electronic cir-
trum is a theoretical approach to give a dynamic charactereuit exhibiting chao$15,16. The experimental arrangement
ization of the formalism, in which various correlations of the is shown schematically in Fig. 1; in this case the nonlinear
dynamical variable can be extractftil—14. The ordinary element in the circuit is the diode. The values of the induc-
power spectrum can capture the correlation of the dynamicahnce and the resistances are as follows:105.3 uH,
variable, but it cannot determine, however, the property oR=10.3(), andr =50}, wherer is the output impedance of
the intermittency clearly. The orderpower spectrum can an oscillator. The diode is of type 1N4004. The driving volt-
determine, on the other hand, the correlations of the laminaage E(t) is a function oft as E(t)=A cos 2rvt. This ex-
part and the burst part of the intermittency separately in gerimental arrangement shows the chaotic behavior involv-
clear-cut way by changing the parametgf12]. The deter- ing the band merging ubiquitous in chafgk]. When we
mination is possible because the ordgpower spectrum is a vary the input frequency, we can observe the band merging
weighted power spectrum and the weight stresses a particulaehavior. The phase portraits ¥{t) versusVy(t) taken on
region of the time series of the dynamical variable. In spiteto the oscilloscope screen are shown in Fig. 2, wh&itd is
of its importance the ordeg-power spectrum is not common the voltage across the diode avg(t) the voltage across the
for physicists except for the earnest supporters. Furthermoréjode and the resistdr.
it has not been used to analyze experimental data. The ordi- In this experimentV(t) is taken into the digital oscillo-
nary power spectrum is very popular for various experi-scope with 0.1xs sampling time, where values ¥f(t) are
ments. At present, the ordgrpower spectrum is used only digitized into 250 points. The original sampling data are
for the analyses of simple analytical models or computasupplemented by the spline function to find precise extrema,
tional analyse$11,12,14. In this paper the analysis with the which will be analyzed later. Just after the band merging,
orderqg power spectrum for the data obtained from an ex-extrema alternately take two nearby values and phase jumps
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{uj}}‘i'l, which is composed ol subregions. In the experi-
I ment reported in this paper this series will be the voltage

'\/\/\, across the diode. Thith subregion k=1,2,...N) has the
average value

E(U@ L Un{k}:%jZl U+ (k—1)n- 1

It should be noted that the averaging exters large enough
in comparison with the characteristic time of the system. The
probability density thati,, takes a valua’ is represented by

1 N
Pa(u)=(d(up—u")=lim & 3, o(un{k}-u"), (2

N— oo

where(---) means the ensemble average #hdlis the Dirac
FIG. 1. Driven nonlineaRLC circuit to produce chaotic time distribution. In many systenf8(u’) asymptotically takes the
series. form

sometimes occur. Namely, the experimental result shows the P.(u')~e NS 3
so-called intermittent switching that the time series dwells in

one band for a while and then intermittently switches to thqor |argen [6,20] This asymptotics is valid Only whem is
other [17]. We investigate the intermittent switching ob- taken to be larger than the largest characteristic time of the
served in this eXperiment. Recently it has been shown that |§ystem The entropy functios(u’) (;0) shows how the
some mathematical models the time series that presents thgctuation ofu,{k} from the long time average., reduces.
intermittent switching have the static and dynamic scalingqere we introduce the free energy functidiq) by
laws[11,18,19.

In this paper we will confirm the existence of scaling laws Mq(n)E<qunqun)>~ed>(q)n’ (4)
in the results obtained from the electronic experiment. The
thermodynamic formalism and the ordgrpower spectrum where
are used to analyze the experimental data. fla¢ spectrum
[8] in the multifractal, which has the same principles as the o1
thermodynamic formalism, has been used to characterize the (q)=lim n In Mg(n). ®)
forms or patterns of the complex systems in experiments. n—
Our results will show how useful the thermodynamic formal-
ism and the ordeg power spectrum are and how to apply
them to analyze the real systems.

The functionsS(u) and ®(q) are related via the Legendre
transform

d®(q) dS(u)
Ill. ANALYSIS BY THE ORDER- q POWER SPECTRUM u(q)= ~dq S(u)=qu-®(q), q=—g—

(6)

In this section we briefly review the thermodynamic for-
malism following Ref.[11]. Let us take a time series We add the susceptibility functiog(q) that is defined as

Vo () (1 V/div.)

FIG. 2. Bands on the oscilloscope fdg(t) vs V(t) before the band mergin@ and after the band mergin@). The change fronta)
to (b) happens as the value of the control paramefehe input frequency, is increased.
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du(q) (i=1,2) be the observed value in théh state andp;(j) be
dq (7)  the probability that the dynamical variable is in ttib state
at timej. The Markov process is described by

x(Q)=

Various time correlations are represented by the ogder-

power spectrunmi,(w) defined ag10] P(j+1)=HP(j), (10
lq(w)=lim (F(w)e")/My(n), (8) WhereP(j)z(gigg). H is the transition matrix composed of
e transition probabilities and the steady-state distribuiQnis
where given by the equality
! ]2 P,=HP,. (11)
Fo(w)=|—= 2 (u—(u;))e " )
Vn =0 On the basis of this Markov process, we calculate the ther-

. . . modynamic functions anti,(w). Let us introduce the gener-
is the Fourier spectrum. The ordgrpower spectrum is the alized transition matrit, given by

ordinary power spectrum obtained from the time series

whose average ig(q). Before we present the results given

by the computational calculation of the data, we will discuss H =

the approach we have used. We have used a phenomenologi-

cal approach in which the properties of the intermittent

switching are captured. where we seb,=—v andv,=v without loss of generality.
The key idea in later discussion is that the intermittenth; andh;; are transition probabilitiesd is identical toH in

switching can be approximately considered as a Markov prokg. (10). The eigenvalues dfl, give thermodynamic func-

cess, where the dynamical variable takes two valuesv|et tions andl4(w) [11]. The largest eigenvalue f, gives

hye™ 9 hye’d

h,,e7?% hie’d

hi 9+ hye "9+ ({h1e"9—hje "9+ 4hyh,) Y2

®(g)=In 5 , (13
which yields
hi,e’9—hj,e
u = ! U ! —v 1 (14)
(@) [(hi£"9—hje™"%)?+4hhy ]
4v®hyhyy(hie79+hye™ )
X(q): I AVA__ ! YA 3/2" (15)
[(h1£"%—hge™ ") +4hyshy]
The orderg power spectrum is, on the other hand, given[by]
Kq Sinh(y,)
_ q q
'o(@) = SR ygl2] + sl wl2]]" (16)
where
i hi°9+hye Y9+ (h1e’9—hje 92+ 4hyhy ]2 17
Ya hi£"9+hye ™ 9= [(hi,e"9—hye %2+ 4hyhy 2]’
4'hthZl
Ka= (h1£"9—hye %)%+ 4hshy, | 18
|
Just after the band merging the transition probability be- 1 (q
tween two states is sufficiently small, then we can derive the x(Q)=—~ f(;) : (19
scaling forms for the thermodynamic functions. We set
h,;=k, h;,=bk, and then take the limik—0. The limit
x—0 corresponds to the situation where the system is just ~ kg q (20)
after the band merging and the dwelling time in one band is Ya K/’

very long. In the limitg—0 and «—0 by keepingx=q/x
finite, the scaling laws hold as where the scaling functions are
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FIG. 3. The susceptibility functioy(q) obtained from the experimental data is expressed by solid lines at each value of the control
parameter. The dashed lines are the fitteq)’'s assuming the two-state Markov model. The distance from the merging point is nearest for
(a), middle for (b), and farthest foKc).

8v2hb from 1 ,(w) obtained from the experimental data via its defi-
f(x)= [(2ox—b+ 12+ 4652 (21)  nition Egs.(8) and (9). The orderg power spectrum g(w)
for the experimental data and the fitted one are compared in
Fig. 4. The scaling form ofy,/«x can be written explicitly as
a function ofx=q/« usingb andv as

g(x)=[4v2x?+4v(1—b)x+(1+b)?]*2 (22)

In this experiment, the frequency of the driving force is Yol k= 4027+ 4v(1—Db)x+(1+b)>. (23)
chosen as the control parameter. The control parameter is
changed monotonically as the distance from the merging On the other handy, for the experimental data is deter-
point increases. We set it at 0.733, 0.740, and 0.755 MHzmined by assuming that,(w) obtained from the experimen-
The number of data values used for the present analysis tal data is written as in Eq16). In practicelq(w) obtained
1024x25 at each value of the control parameter. The averfrom the experimental data is assumed to fit that in @#6).
aging spam is set at 512. The thermodynamic functigfq) The decay ratey, of temporal correlations determined from
at each value of the control parameter is shown in Fig. 3. Irihe experimental data at one value of the control parameter is
this case the parametbrhas different values at three points shown in Fig. 4. The values of,/«x determined from the
of the control parameter. We determireandb to fit x(q) experimental data and the typicgaldependences of,/x are
calculated from Eq(15) to the one obtained from the experi- shown in Fig. 5 with open circles and solid lines, respec-
mental data. First we define by settingv=(V,—V;)/2, tively. These figures show qualitative agreement except for
whereV, andV, are approximately minimal and maximal Fig. 5(c). This might mean that the experimental data just
values ofu(q) obtained from the experimental data, respec-after the band merging have the scaling law and a self-
tively. It should be noted that we assume thiagtandV, are  similarity. But only in the region where the control param-
temporary and the experimental data take various minimagter is farthest from the band merging point, the result does
and maximal values. Second we determinandb such that not show good agreement. This implies that the data have the
x(0) and the maximunmy(q), g being the peak position of scaling laws just after the band merging.
x(q), obtained from the experimental data fit to those of the We have shown that the thermodynamic functions and the
two-state Markov model as shown in Fig. 3. The values of orderqg power spectrum can be calculated from experimental
andb determined in this manner are shown in Table I. Thedata comparatively easily and the scaling law exists in the
values ofx andb are recorded at three points of the control experimental data. The time series that exhibits the intermit-

parameter.

Let us turn now to the dynamic scaling law. We deter- 1, Ty
mined « andb at each value of the control parameter. From 1500 ‘ ‘ ‘
these two values, the peak width of 1,(w) can be deter- (=) 0.04
mined by assuming the two-state Markov model. Thjsis 1000 f ;

the criterion that must be compared with the one calculated -
500 :

TABLE |. Values of k and b are determined such thafq)
calculated from the two-state Markov model fits the one obtained 0F ' ’ - 0
from the experimental data. Values ofare given by the upper 0 1 2 3 -0.003 0 0.003
limits and the lower limits ofi(qg)’s. (a), (b), and(c) have the same !
values of the control parameter as in Fig. 3.

FIG. 4.1,_o(w) obtained in the experiment is expressed by dots

K b v in (a). The solid line in(a) is the fittedl ;- o(w) by assuming the
form Eq.(16). The open circles irtb) express the peak width, of
€) 0.006 687 91 0.423513 4.0 the fitted curve in(a). The solid line in(b) is v, obtained from the
(b) 0.004 770 28 121121 6.0 fitted x(q) that is expressed by the dashed line in Fig. 3. The value
() 0.004 532 83 2.441 27 2.0 of the control parameter in these figures is the same as in &y. 3

The unit ofw is radian.
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FIG. 5. yy/«x vs g/« is expressed by open circles that are obtained directly from the experimental data by assuntit&). Hqe solid
lines are obtained from the fitteg(q)'s shown with dashed lines in Fig. 8), (b), and(c) have the same values of the control parameter
as in Fig. 3.

tent switching has scaling laws, which had been previously The results reported in this paper present a way to analyze
verified only for mathematical models, for example, logisticthe experimental time series that exhibits chaos. In experi-
map, double-well potential system, parametrically excitednents the ordinary power spectruiy_q(w) is used com-
pendulum, etc[11]. We believe our results have confirmed monly for measurements. But this gives only average modes
an important point regarding the existence of a scaling lawof motion. Note that nature has various correlations that are
extracted directly from the experimental data. not captured on the average. The ordepower spectrum
can describe various correlation characteristics that cannot be
singled out by the ordinary one. This is the important point
supporting the use of the ordgrpower spectrum. The au-
The chaotic time series generated by an experiment fothors hope this paper will set a good example for the use of
the forcedR L C electronic circuit was studied by the thermo- | 4(w).
dynamic formalism and its extended form. Our results have
shown that the thermodynamic formalism can be also ap-
plied to a simple experimental apparatus. In particular, for
the chaotic time series the scaling law just after the band We would like to thank Professor H. Fujisaka for advice
merging was confirmed, similarly to that in many mathemati-in starting this investigation and for his critical reading of the
cal models studied previously. manuscript. We also thank S. Uchiyama for Fig. 1.

IV. CONCLUDING REMARKS
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