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An experiment of a nonlinearRLC electronic circuit that exhibits chaotic behavior is analyzed by the
thermodynamic formalism method. The band merging is ubiquitous in physical systems that show chaotic
behavior. A dynamical variable of the experimental data just after the band merging is studied. The results
show that a dynamic scaling law holds in the experimental data. The decay rate of temporal correlation has the
scaling form asgq5kg(q/k), whereq is the parameter that characterizes the fluctuation of dynamical variable
and k is its characteristic value. The present analysis confirms that the thermodynamic formalism and the
generalized power spectrum can be successively applied for time series obtained from concrete experiments.
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I. INTRODUCTION

In recent years the thermodynamic formalism has been
used in many disciplines@1,2#. It is very useful to character-
ize the self-similar statistics of physical systems. The first
theoretical work describing the thermodynamic formalism
@3# was published by Donsker and Varadhan, where it was
presented as thelarge deviation theory@4–6#. On the other
hand, the same framework was completed for physical sys-
tems@7–9# independently of the probability theory. This for-
malism is especially useful in characterizing nonlinear sys-
tems, and the usefulness of this approach has been presented
already@1#. The use of the artificial parameterq correspond-
ing to the temperature in thermodynamics makes it possible
to investigate the statistical aspect of dynamical variables.

Recently this formalism has been extended to the order-q
power spectrum in order to single out temporal correlations
contained in the dynamical variable from the viewpoint of
the thermodynamic formalism@10#. The order-q power spec-
trum is a theoretical approach to give a dynamic character-
ization of the formalism, in which various correlations of the
dynamical variable can be extracted@11–14#. The ordinary
power spectrum can capture the correlation of the dynamical
variable, but it cannot determine, however, the property of
the intermittency clearly. The order-q power spectrum can
determine, on the other hand, the correlations of the laminar
part and the burst part of the intermittency separately in a
clear-cut way by changing the parameterq @12#. The deter-
mination is possible because the order-q power spectrum is a
weighted power spectrum and the weight stresses a particular
region of the time series of the dynamical variable. In spite
of its importance the order-q power spectrum is not common
for physicists except for the earnest supporters. Furthermore,
it has not been used to analyze experimental data. The ordi-
nary power spectrum is very popular for various experi-
ments. At present, the order-q power spectrum is used only
for the analyses of simple analytical models or computa-
tional analyses@11,12,14#. In this paper the analysis with the
order-q power spectrum for the data obtained from an ex-

periment of a nonlinearRLC circuit will be reported. In the
past many temporal correlations might be abandoned in the
conventional analysis, whereas these correlations involve es-
sential features for physics. This paper contributes to nonlin-
ear physics a way to extract various correlations or modes of
motion from experimental data.

This paper is organized as follows. In Sec. II an experi-
ment that produces a chaotic time series is introduced. This
experiment was carried out with an electric circuit known as
the driven nonlinearRLC circuit. In Sec. III first the ther-
modynamic formalism and the order-q power spectrumI q~v!
are reviewed briefly. Next the experimental data are analyzed
from the viewpoint of the thermodynamic formalism, and the
order-q power spectrumI q~v! is used to investigate the data
obtained from the experiment. Concluding remarks are given
in Sec. IV.

II. AN EXPERIMENT FOR AN ELECTRONIC CIRCUIT

To test our approach we will use a simple electronic cir-
cuit exhibiting chaos@15,16#. The experimental arrangement
is shown schematically in Fig. 1; in this case the nonlinear
element in the circuit is the diode. The values of the induc-
tance and the resistances are as follows:L5105.3 mH,
R510.3V, andr550V, wherer is the output impedance of
an oscillator. The diode is of type 1N4004. The driving volt-
ageE(t) is a function oft asE(t)5A cos 2pnt. This ex-
perimental arrangement shows the chaotic behavior involv-
ing the band merging ubiquitous in chaos@15#. When we
vary the input frequencyn, we can observe the band merging
behavior. The phase portraits ofV(t) versusV0(t) taken on
to the oscilloscope screen are shown in Fig. 2, whereV(t) is
the voltage across the diode andV0(t) the voltage across the
diode and the resistorR.

In this experimentV(t) is taken into the digital oscillo-
scope with 0.1-ms sampling time, where values ofV(t) are
digitized into 250 points. The original sampling data are
supplemented by the spline function to find precise extrema,
which will be analyzed later. Just after the band merging,
extrema alternately take two nearby values and phase jumps
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sometimes occur. Namely, the experimental result shows the
so-called intermittent switching that the time series dwells in
one band for a while and then intermittently switches to the
other @17#. We investigate the intermittent switching ob-
served in this experiment. Recently it has been shown that in
some mathematical models the time series that presents the
intermittent switching have the static and dynamic scaling
laws @11,18,19#.

In this paper we will confirm the existence of scaling laws
in the results obtained from the electronic experiment. The
thermodynamic formalism and the order-q power spectrum
are used to analyze the experimental data. Thef ~a! spectrum
@8# in the multifractal, which has the same principles as the
thermodynamic formalism, has been used to characterize the
forms or patterns of the complex systems in experiments.
Our results will show how useful the thermodynamic formal-
ism and the order-q power spectrum are and how to apply
them to analyze the real systems.

III. ANALYSIS BY THE ORDER- q POWER SPECTRUM

In this section we briefly review the thermodynamic for-
malism following Ref. @11#. Let us take a time series

$uj% j51
nN , which is composed ofN subregions. In the experi-

ment reported in this paper this series will be the voltage
across the diode. Thekth subregion (k51,2,...,N) has the
average value

un$k%5
1

n (
j51

n

uj1~k21!n . ~1!

It should be noted that the averaging extentn is large enough
in comparison with the characteristic time of the system. The
probability density thatun takes a valueu8 is represented by

Pn~u8![^d~un2u8!&5 lim
N→`

1

N (
k51

N

d~un$k%2u8!, ~2!

where^•••& means the ensemble average andd~ ! is the Dirac
distribution. In many systemsP(u8) asymptotically takes the
form

Pn~u8!;e2nS~u8! ~3!

for largen @6,20#. This asymptotics is valid only whenn is
taken to be larger than the largest characteristic time of the
system. The entropy functionS(u8) ~>0! shows how the
fluctuation ofun$k% from the long time averageu` reduces.
Here we introduce the free energy functionF(q) by

Mq~n![^exp~nqun!&;eF~q!n, ~4!

where

F~q!5 lim
n→`

1

n
ln Mq~n!. ~5!

The functionsS(u) andF(q) are related via the Legendre
transform

u~q!5
dF~q!

dq
, S~u!5qu2F~q!, q5

dS~u!

du
. ~6!

We add the susceptibility functionx(q) that is defined as

FIG. 1. Driven nonlinearRLC circuit to produce chaotic time
series.

FIG. 2. Bands on the oscilloscope forV0(t) vs V(t) before the band merging~a! and after the band merging~b!. The change from~a!
to ~b! happens as the value of the control parametern, the input frequency, is increased.
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x~q![
du~q!

dq
. ~7!

Various time correlations are represented by the order-q
power spectrumI q~v! defined as@10#

I q~v![ lim
n→`

^Fn~v!eqnun&/Mq~n!, ~8!

where

Fn~v![U 1An (
j50

n21

~uj2^uj&!e2 iv jU2 ~9!

is the Fourier spectrum. The order-q power spectrum is the
ordinary power spectrum obtained from the time series
whose average isu(q). Before we present the results given
by the computational calculation of the data, we will discuss
the approach we have used. We have used a phenomenologi-
cal approach in which the properties of the intermittent
switching are captured.

The key idea in later discussion is that the intermittent
switching can be approximately considered as a Markov pro-
cess, where the dynamical variable takes two values. Letv i

~i51,2! be the observed value in thei th state andpi( j ) be
the probability that the dynamical variable is in thei th state
at time j . The Markov process is described by

P~ j11!5HP~ j !, ~10!

whereP( j )5(p2( j )
p2( j )). H is the transition matrix composed of

transition probabilities and the steady-state distributionP
*
is

given by the equality

P*5HP* . ~11!

On the basis of this Markov process, we calculate the ther-
modynamic functions andI q~v!. Let us introduce the gener-
alized transition matrixHq given by

Hq5Fh218 e2vq h12e
vq

h21e
2vq h128 e

vqG ~hi j8 [12hi j !, ~12!

where we setv152v andv25v without loss of generality.
hi j8 andhi j are transition probabilities.H0 is identical toH in
Eq. ~10!. The eigenvalues ofHq give thermodynamic func-
tions andI q~v! @11#. The largest eigenvalue ofHq gives

F~q!5 ln
h128 e

vq1h218 e
2vq1~$h128 e

vq2h218 e
2vq%214h12h21!

1/2

2
, ~13!

which yields

u~q!5
h128 e

vq2h218 e
2vq

@~h128 e
vq2h218 e

2vq!214h12h21#
1/2, ~14!

x~q!5
4v2h12h21~h128 e

vq1h218 e
2vq!

@~h128 e
vq2h218 e

2vq!214h12h21#
3/2. ~15!

The order-q power spectrum is, on the other hand, given by@11#

I q~v!5
Kq sinh~gq!

2@sinh2@gq/2#1sin2@v/2##
, ~16!

where

gq5 lnFh128 evq1h218 e
2vq1@~h128 e

vq2h218 e
2vq!214h12h21#

1/2

h128 e
vq1h218 e

2vq2@~h128 e
vq2h218 e

2vq!214h12h21#
1/2G , ~17!

Kq5
4h12h21

~h128 e
vq2h218 e

2vq!214h12h21
. ~18!

Just after the band merging the transition probability be-
tween two states is sufficiently small, then we can derive the
scaling forms for the thermodynamic functions. We set
h215k, h125bk, and then take the limitk→0. The limit
k→0 corresponds to the situation where the system is just
after the band merging and the dwelling time in one band is
very long. In the limitq→0 andk→0 by keepingx5q/k
finite, the scaling laws hold as

x~q!5
1

k
f S qk D , ~19!

gq5kgS qk D , ~20!

where the scaling functions are
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f ~x!5
8v2b

@~2vx2b11!214b#3/2
, ~21!

g~x!5@4v2x214v~12b!x1~11b!2#1/2. ~22!

In this experiment, the frequency of the driving force is
chosen as the control parameter. The control parameter is
changed monotonically as the distance from the merging
point increases. We set it at 0.733, 0.740, and 0.755 MHz.
The number of data values used for the present analysis is
1024325 at each value of the control parameter. The aver-
aging spann is set at 512. The thermodynamic functionx(q)
at each value of the control parameter is shown in Fig. 3. In
this case the parameterb has different values at three points
of the control parameter. We determinek andb to fit x(q)
calculated from Eq.~15! to the one obtained from the experi-
mental data. First we definev by settingv[(V22V1)/2,
whereV1 andV2 are approximately minimal and maximal
values ofu(q) obtained from the experimental data, respec-
tively. It should be noted that we assume thatV1 andV2 are
temporary and the experimental data take various minimal
and maximal values. Second we determinek andb such that
x~0! and the maximumx(q̂), q̂ being the peak position of
x(q), obtained from the experimental data fit to those of the
two-state Markov model as shown in Fig. 3. The values ofk
andb determined in this manner are shown in Table I. The
values ofk andb are recorded at three points of the control
parameter.

Let us turn now to the dynamic scaling law. We deter-
minedk andb at each value of the control parameter. From
these two values, the peak widthgq of I q~v! can be deter-
mined by assuming the two-state Markov model. Thisgq is
the criterion that must be compared with the one calculated

from I q~v! obtained from the experimental data via its defi-
nition Eqs.~8! and ~9!. The order-q power spectrumI q~v!
for the experimental data and the fitted one are compared in
Fig. 4. The scaling form ofgq/k can be written explicitly as
a function ofx5q/k usingb andv as

gq /k5A4v2x214v~12b!x1~11b!2. ~23!

On the other hand,gq for the experimental data is deter-
mined by assuming thatI q~v! obtained from the experimen-
tal data is written as in Eq.~16!. In practiceI q~v! obtained
from the experimental data is assumed to fit that in Eq.~16!.
The decay rategq of temporal correlations determined from
the experimental data at one value of the control parameter is
shown in Fig. 4. The values ofgq/k determined from the
experimental data and the typicalq dependences ofgq/k are
shown in Fig. 5 with open circles and solid lines, respec-
tively. These figures show qualitative agreement except for
Fig. 5~c!. This might mean that the experimental data just
after the band merging have the scaling law and a self-
similarity. But only in the region where the control param-
eter is farthest from the band merging point, the result does
not show good agreement. This implies that the data have the
scaling laws just after the band merging.

We have shown that the thermodynamic functions and the
order-q power spectrum can be calculated from experimental
data comparatively easily and the scaling law exists in the
experimental data. The time series that exhibits the intermit-

FIG. 3. The susceptibility functionx(q) obtained from the experimental data is expressed by solid lines at each value of the control
parameter. The dashed lines are the fittedx(q)’s assuming the two-state Markov model. The distance from the merging point is nearest for
~a!, middle for ~b!, and farthest for~c!.

TABLE I. Values of k and b are determined such thatx(q)
calculated from the two-state Markov model fits the one obtained
from the experimental data. Values ofv are given by the upper
limits and the lower limits ofu(q)’s. ~a!, ~b!, and~c! have the same
values of the control parameter as in Fig. 3.

k b v

~a! 0.006 687 91 0.423 513 4.0
~b! 0.004 770 28 1.211 21 6.0
~c! 0.004 532 83 2.441 27 2.0

FIG. 4. I q50~v! obtained in the experiment is expressed by dots
in ~a!. The solid line in~a! is the fittedI q50~v! by assuming the
form Eq. ~16!. The open circles in~b! express the peak widthgq of
the fitted curve in~a!. The solid line in~b! is gq obtained from the
fitted x(q) that is expressed by the dashed line in Fig. 3. The value
of the control parameter in these figures is the same as in Fig. 3~b!.
The unit ofv is radian.
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tent switching has scaling laws, which had been previously
verified only for mathematical models, for example, logistic
map, double-well potential system, parametrically excited
pendulum, etc.@11#. We believe our results have confirmed
an important point regarding the existence of a scaling law
extracted directly from the experimental data.

IV. CONCLUDING REMARKS

The chaotic time series generated by an experiment for
the forcedRLC electronic circuit was studied by the thermo-
dynamic formalism and its extended form. Our results have
shown that the thermodynamic formalism can be also ap-
plied to a simple experimental apparatus. In particular, for
the chaotic time series the scaling law just after the band
merging was confirmed, similarly to that in many mathemati-
cal models studied previously.

The results reported in this paper present a way to analyze
the experimental time series that exhibits chaos. In experi-
ments the ordinary power spectrumI q50~v! is used com-
monly for measurements. But this gives only average modes
of motion. Note that nature has various correlations that are
not captured on the average. The order-q power spectrum
can describe various correlation characteristics that cannot be
singled out by the ordinary one. This is the important point
supporting the use of the order-q power spectrum. The au-
thors hope this paper will set a good example for the use of
I q~v!.
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